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Abstract 

The heat capacity of cobalt(B) bromate hexahydrate CO(H~O)~(B~O~)~ was measured at tem- 
peratures between 13 and 310 K. Infrared and Raman spectra of the crystal were recorded in the 
frequency range of 400-4000 cm-’ for the former and XI-4000 cm-t for the latter. The heat ca- 
pacity data were analyzed in harmonic approximation using Debye and Einstein heat capacity 
functions. Some of the characteristic frequencies of the heat capacity functions were taken from the 
vibrational spectra and others determined by non-linear least squares fitting of the heat capacity 
function to the experimental heat capacity data. One Debye temperature (92 + 1 K) and three Ein- 
stein temperatures (123 f 2 K, 231 + 1 K, 614 * 50 K) were determined as functions of the tem- 
perature interval of the heat capacity data used for the fitting. The best-fit characteristic tempera- 
tures were constant, except for the third Einstein temperature, against variation of the upper limit 
temperature of the fitting interval from 16 to 280 K with the lower limit temperature being kept at 
13 K. The Debye temperature agreed with a value of 92.4 K derived from the sound velocity. The 
best-fit Einstein temperatures have counterparts in the Raman spectrum in the lattice vibration 
region. This is the first detailed analysis of heat capacity data on a structurally complex crystal in 
which acoustic phonon frequencies from thermal and elastic properties are favorably compared. 
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1. Introduction 

The Einstein [l] and Debye [2] theories of harmonic solids have been successfully 
used in qualitative discussion of thermophysical properties of solids involving phonons 
and phonon interactions as well as in quantitative representation of thermodynamic prop- 
erties of solids. It is now established that thermal properties of a solid can be calculated 
accurately, within the harmonic approximation, once the distribution function of the 
normal mode frequencies is known [3]. 

The frequency distribution function is represented well by the Debye w2 law in the 
low frequency limit, while the functional form is more complicated at higher frequencies 
with various types of van Hove singularities and gaps occurring at different frequencies. 
The lattice spectrum, i.e. the frequency distribution function, may be calculated by the 
lattice dynamics of Born and von Karman [4,5] who showed how to determine the nor- 
mal mode frequencies of a crystal lattice from the equation of motion of the atoms 
forming the crystal. Thus, the heat capacity of a crystal can be calculated, in principle, 
from the knowledge of intra- and intermolecular forces. Also in practice, a lattice dy- 
namical calculation produces realistic phonon spectra for simple crystals. They can be 
compared with neutron scattering and calorimetric experiments [6]. Although this frame 
work of lattice dynamics, statistical mechanics and thermodynamics has been well estab- 
lished, actual calculation of the heat capacity of a solid involves a large number of pa- 
rameters whose values are not known. It is obviously desirable to develop transferable 
interatomic potentials or even methods for accurate ab initio lattice dynamical calcula- 
tion. 

From the experimental point of view, we are often interested in anomalous heat ca- 
pacities such as those due to phase transitions and want to separate them from the vibra- 
tional heat capacity. For such purposes, the original Debye and Einstein theories are easy 
to use and give apparently reasonable results, and have actually been employed in many 
cases [7-251 assuming that these theories are applicable to more complex crystals as 
well. The same theories have been extended to deal with thermal expansion of solids 
[26]. It was, therefore, desirable to test the consistency of such calculations for sub- 
stances considerably more complex than metals and alkali halides. 

In the present paper, we describe the analysis of the heat capacity of a fairly complex 
coordination compound by the use of the Einstein and Debye theories, and compare the 
result with elastic and expansivity data. 

Cobalt(I1) bromate hexahydrate Co(H20)6(Br03)2 crystallizes in a cubic structure 
[27]. In this crystal, all the cobalt atoms are equivalent and so are all the water molecules 
and bromate ions [28,29]. We chose this compound for our investigation because of this 
structural regularity in contradistinction to its complex chemical composition. Because of 
the cubic symmetry, the number of independent elastic constants is small, which makes 
the analysis of the relation between the mechanical and thermal properties simpler than 
otherwise. It is important that a complete set of the elastic constants and the thermal ex- 
pansivity has been measured [30]. The high symmetry of the crystal is intrinsic rather 
than an averaged property; all the atoms including hydrogen atoms are ordered. This was 
confirmed by the absence of any anomaly in the heat capacity. 



T Matsuo et al. IThermochimica Acta 267 (1995) 421-434 423 

TIK 

Fig. 1. Molar heat capacities of Co(H20)6(BrO&. The curves represent calculated heat capacities. (1) Debye 
term, optimized; (2) Debye and Einstein terms, optimized; (3) calculated vibrational heat capacities at constant 
volume; (4) experimental molar heat capacities, open circles. Calculated heat capacities at constant pressure 
agree with the experimental values well within the size of the circles representing the latter. 

2. Experiment and its result 

Barium bromate was prepared from barium chloride and potassium bromate. Its reac- 
tion with cobalt(I1) sulfate gave an aqueous solution of cobalt(I1) bromate and insoluble 
barium sulfate. Cobalt(H) bromate hexahydrate was obtained from the filtered solution 
by evaporation of the water [28]. The air-dried crystal, pink-red in color, was stable when 
kept in ambient atmosphere: 6.2429 g (in vacua) of the crystals, l-3 mm at the edges 
were sealed in a gold plated copper sample cell of a computer controlled adiabatic calori- 
meter [31,32]. The heat capacity was measured at 13 K intervals between 13 and 310 K. 

The heat capacity varied smoothly with temperature as Fig. 1 shows, following the 
general course of the temperature dependence of the vibrational heat capacity. At 
268.2 K, a slight deviation from the normal behavior occurred. It was due to melting of a 
small amount of ice formed from occluded aqueous solution of recrystallization. The 
peak did not occur in a run in which the sample had been cooled to 250 K, because the 
occluded solution supercooled in this series. The amount of the occluded aqueous solu- 
tion was 4.9 mg in 6.2429 g of the sample as estimated from the enthalpy of fusion of the 
ice. The impurity was corrected for in the calculation of the molar heat capacities given 
in Table 1. 

The infrared absorption spectrum was recorded with a Fourier transform JASCO 
FI/IR3 spectrometer on a powdered sample dispersed in paraffin. The sample was 
guarded against dehydration by a pair of KBr plates sandwiching the mulled sample. The 
Raman spectra were recorded with a JASCO R800 spectrometer using a helium-neon 
laser source. The infrared and Raman spectra are reproduced in Figs. 2 and 3. The peaks 
were assigned tentatively by comparison with published data [33-371. Wave numbers of 
the peaks are given in Table 2. 
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Table 1 

Experimental molar heat capacities of CO(H~O)@~~)~, 

T/K Cd T/K T/K T/K 
J K-’ mol-’ 

Cd 
J K-’ mol-’ 

Cd 
J K-’ mol-’ 

C,,/J K-’ 

13.26 5.271 49.36 76.06 127.69 220.9 
13.97 6.017 50.60 78.96 130.23 224.7 
14.60 6.752 50.7 1 79.30 132.76 228.5 
15.29 7.591 51.80 81.61 135.31 232.2 
16.08 8.622 53.94 86.74 137.90 235.8 
17.01 9.890 56.56 92.39 140.48 239.5 
18.06 11.41 59.02 97.57 143.08 243.2 
19.03 12.89 61.35 102.5 145.72 247.0 
19.94 14.36 63.56 107.2 148.35 250.6 
20.85 15.86 65.67 111.6 151.01 254.2 
21.78 17.43 67.70 115.9 153.70 258.1 
22.66 18.94 69.65 119.8 156.37 261.4 
23.55 20.53 71.54 123.8 159.08 265.0 
24.43 22.15 73.59 127.8 161.82 268.7 
25.27 23.72 75.81 132.2 164.54 272.4 
26.11 25.30 78.06 136.6 167.30 276.2 
26.95 26.89 80.34 141.2 170.08 279.7 
27.81 28.61 82.58 145.3 172.85 283.0 
28.69 30.22 84.84 149.5 175.88 286.9 
29.50 32.33 87.14 153.7 179.18 291.2 
30.26 33.91 89.40 158.1 182.46 295.2 
31.05 35.36 91.69 162.2 185.80 299.1 
31.87 37.03 94.02 166.3 189.20 303.5 
32.76 39.01 96.31 170.4 192.58 307.8 
33.77 41.22 98.64 174.3 196.02 311.5 
34.88 43.60 101.00 178.5 199.51 315.7 
36.04 46.12 103.34 182.5 202.99 319.9 
37.32 48.97 105.70 186.5 206.52 323.9 
38.76 52.13 108.11 190.6 210.10 328.1 
40.18 55.28 110.48 194.5 213.67 332.1 
41.57 58.39 112.90 198.3 217.29 336.3 
42.95 61.46 115.34 201.8 220.97 340.6 
44.26 64.44 117.77 205.7 224.62 344.8 
45.57 67.37 120.22 209.5 228.33 349.4 
46.86 70.32 122.72 213.3 232.08 353.9 
48.11 73.22 125.19 217.2 235.82 357.9 

239.61 362.2 
243.44 366.6 
247.00 369.7 
249.7 1 372.8 
252.41 375.7 
255.09 378.7 
257.76 381.8 
260.42 385.0 
262.42 388.1 
263.06 388.0 
265.04 390.8 
265.68 391.8 
267.64 393.6 
270.23 396.4 
272.81 399.0 
275.37 401.6 
275.86 402.1 
277.93 404.1 
278.42 404.7 
280.47 406.8 
280.96 407.3 
283.50 410.0 
286.02 412.7 
288.54 415.4 
291.04 418.2 
293.53 420.6 
296.00 423.2 
298.47 425.5 
300.93 428.2 
303.37 431.0 
305.81 433.2 
308.23 435.7 
310.64 438.5 

3. Discussion 

The absence of anomalies in the heat capacity curve suggests that it may be repro- 
duced by a collection of harmonic oscillator contributions. In the following we show that 
this is actually the case. We utilize the spectroscopic data to determine Einstein tempera- 
tures of the intramolecular vibrations, assuming that normal modes of neighboring mole- 
cules are independent of each other. 
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Fig. 2. Infrared spectrum of Co(H20)6(B@)2. 

3. I. Model heat capacity function 

The model heat capacity function consisted of three parts; C(1) the heat capacity due 
to intramolecular vibrations whose frequencies can be found in the spectroscopic data, 
C(2) the heat capacity due to lattice vibrations whose characteristic temperatures are de- 
termined by comparison with the heat capacity data, and (3) small correction terms for 
the difference between Cr, and C, and for an electronic excitation of the cobalt(I1) ion. 

1600 800 0 

v / cm-’ 

400 300 200 100 0 

v / cm’ 

Fig. 3. (a) Raman spectrum of Co(H20)6(B@)2. O-2000 cm-l region. (b) Raman spectrum of 
COAX, O-IO0 cm-’ region. 
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Table 2 

Wave numbers of the IR and Raman peaks of CO(H20)&3~3)2 

v/cm-’ Assignment Ref. 

IR Raman 

3275 
1634 
848 
838 
784 
717 
627 
617 
462 

797.8 

427.5 
368.1 

259.9 
254.4 
220.6 
159.5 
132.0 
110 
79 
71 
55 

Hz0 “1, ‘3 [351 
H20~2 [351 
H20 rock. [371 

BrO- v, [361 
Br03- v3 [361 
H20 wag. [371 

BrO- v2 
Co(H20)b2+ %‘6 
Br03- v4 
CO(H~O)~~+ v, 
CO(H~O)~~+ v3 
Co(H20)b2+ v5 
Co(H20)b2+ v2 
CO(H~O)~~+ v4 
Lattice vibration 
I.V. 

I.V. 

I.V. 

I.V. 

[361 
[32-341 
t351 
[32-341 
[32-341 
[32-341 
[32-341 
[32-341 

For calculation of C(l), the Einstein temperatures S,,(l) and the weights gEi(l) were 
taken from the spectroscopic data. They are as follows (in degrees Kelvin with the weight 
given in parentheses); 4800(6), 4600(6), 2351(6), 1220(3), 1206(3), 1148(l), 1128(l), 
1032(4), 902(3), 888(3), 682(3), 665(2), 614(3), 530(4), 530(l), 374(3), 366(3), 317(2), 
229(3). Site and factor group splittings were ignored, because their effect on the heat 
capacity was insignificant as long as the total number of the modes were counted cor- 
rectly in each of the multiplets. C( 1) was calculated using the following equation: 

N,(l) 
C(l)=R Cg,i(I)C,(O,i(I)/T) (1) 

i=l 

where R is the gas constant and Cn the Einstein heat capacity function normalized to 1 at 
T= -, 

C,(x) = x2e-V( 1 - e-x)2 (2) 

In total 60 degrees of freedom were included in C( 1). 
The term C(2) containing unknown characteristic temperatures was as follows: 
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N,(2) N,(2) 
C(2)=R Cg,i(2)C,(@,i(2)lT)+R CgEi(2)C,(@,i(2)‘T) (3) 

i=l i=l 

where goi(2) and g&2) are the weights of the contributions from the respective terms. 
They were chosen to properly represent the vibrational units in accordance with the 
known spectroscopic and structural properties of the molecular ions. 6oi(2) and &i(2) are 
the Debye and Einstein temperatures to be optimized by the least squares method to re- 
produce the experimental heat capacities. The sum of the weights gEi( 1) (i = 1 to Na( l)), 
gDi(2) (i = 1 to N,(2)) and g&2) (i = 1 to Na(2)) is equal to the number of the vibrational 
degrees of freedom. Since there are N = 27 atoms in the chemical unit Co(H20)6(Br03)2 
they sum up to 8 1. Thus 

NE(~) ND(~) NE(~) 

3N= CgEi(l)+ C g,iC2)+ CgEi(2) (4) 
i=l i=l i=l 

We chose N,(2) = 1, gD2(1) = 3; N,(2) = 3, gsi(2) = 6, g&2) = 9, g&2) = 3. The first 
term contains 60 degrees of freedom, the second term 3 and the third term 18. 

The Debye function was computed by the use of a series expansion [38], 

(5) 

where x = $,/T. The infinite series was truncated in the actual calculation at an appropri- 
ate number of terms. 

The Cr-CV correction term was included in the calculation in the form ACP2T where A 
was one of the least squares parameters. This has a thermodynamic basis in the quasi- 
harmonic approximation [39]. 

3.2. Optimization and its result 

The parameters 6oi(2) (i = l), g,,(2) (i = l-3) and A were optimized by minimizing 
the following function: 

ND, 
F(OO,(~),~,,(~),OE~(~),A) = C (C,,,(7;)- C,,,,t~)12 (6) 

i=l 

Cca,c (T I= C(1) + Csch + C(2) + AC_,, (Ti H2 T (64 

where NoA is the number of the experimental points taken into the fitting. The second 
term in Eq. (6a) accounts for the electronic energy levels due to the spin orbit coupling in 
the cobalt(I1) ion. Its small contribution to the heat capacity was calculated by the 
Schottky equation using the coupling constant 1= 180 cm-i [40]. 

The search for the best-fit parameter values was performed on a personal computer for 
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Table 3 

The best-fit values of the Debye and Einstein temperatures and the A coefficient determined from the 13- 
200 K data set 

0,(3)/K OE(6)/K OE(9)/K OE(3)/K A/mol J-l 

92.7 + 0.1 123.6 k 0.5 231.OkO.4 6142 10 (5.76 + 1 .O)E-7 

which the program was written in BASIC. The algorithm was based on iterated solution 
of the linearized normal equation. With five parameters to be optimized for 100 data 
points, one cycle of calculation took about 30 s. Therefore, various initial values could be 
tested without consuming too much time. The least squares program was originally writ- 
ten in FORTRAN to be run on a main-frame computer. It was translated to BASIC as fast 
personal computers became available later. 

The best-fit functions are shown in Fig. 1 along with the experimental points. Table 3 
gives the best fit set of the parameter values based on the data points between 13 and 
200 K. The Debye term (r?,,(2) = 92.7 K) represents the acoustic branch of the lattice 
vibration and the Einstein terms the optical branches, i.e. relative motions (rotational and 
translational) of the molecular ions. The highest frequency mode r&(2) (= 600-770 K) 
represents a part of the torsional modes of the water molecules, while r&(2) (= 123.6 K) 
and g&2) (=231.0 K) may be identified with translational and rotational parts, respec- 
tively, of the optical modes. However, precise correspondence should not be expected to 
hold between such qualitative description of the lattice vibration and the actual character- 
istic temperatures. 

The weights of the modes may be justified as follows. The Debye term has a weight of 
three as usual to represent the longitudinal and two transverse modes of the acoustic vi- 
bration. The weight 6 of i),,(2) may be identified with three (i.e. X, y and Z) translations 
of each of the two bromate ions. The weight 9 of r?,,(2) was at first divided as 6 + 3 and 
meant to represent six rotational vibrations of the two bromate ions and three rotational 
vibrations of the cobalt hexahydrate ion. The least squares calculation based on this 
model function gave close values for the two characteristic temperatures. Therefore, they 
were put together with a combined weight of 9 assigned to it. The residual value of F 
(Eq. 6) obtained with the simplified model was no larger than that from the original 
model. Therefore, it was accepted in the final result. 

There are several Raman lines in the corresponding frequency region (Table 2). They 
may be identified with the calorimetric Einstein frequencies, 83 cm-’ (123 K) and 
160 cm-’ (230 K). In view of the averaging nature of the thermodynamic measurement, 
the agreement between the two results is satisfactory. Thus the detailed lattice vibrational 
spectra (Fig. 3) are averaged into a small number of the Einstein and Debye tempera- 
tures. 

One may ask how faithfully the least squares parameters represent the actual lattice 
spectrum of the complex crystal. In order to answer this question, we varied the tempera- 
ture interval of the data taken into the least squares calculation. If the model function was 
an accurate representation of the actual lattice spectrum, the parameter values would be 
stable against the variation of the data set used for the fitting, This was actually the case. 
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Fig. 4. The best-fit Debye (1) and Einstein (2) temperatures as functions of the data set used for the fitting. 
The horizontal axis represents the upper end temperature of the interval of the data set. The lower end tem- 
perature was 13 K for all of the points. Probable errors are roughly equal to the size of the circles. 

Figs. 4 and 5 show the best-fit parameter values as functions of the upper limit tempera- 
ture T, of the fitting interval. The lower limit was fixed to 13 K for all the points plotted. 
Thus, the data points plotted at 16 K were calculated using the experimental heat capaci- 
ties between 13 and 16 K, those at 20 K were calculated using the heat capacities be- 
tween 13 and 20 K and so on. The Debye temperature and two low Einstein temperatures 
are remarkably constant against the change in the data set used for the fitting. This gives 
strong credibility to the fitting procedure. The highest Einstein temperature (curve (1) of 
Fig. 5) and the A coefficient (Eq. 6a) are correlated in the least squares fitting. Also these 
two terms contribute only weakly for T < 150 K. These factors, coupled with the small 

I I 

100 200 
Tu / K 

Fig. 5. The best Einstein temperatures as functions of the data set used for fitting. The horizontal axis gives the 
upper end temperature of the interval of the data set. The lower end temperature was 13 K for all of the points. 
Probable errors are given by the vertical bars for the upper curve and for some of the points in the lower. For 
those without an error bar the probable error is roughly equal to the size of the circle. 
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weight 3 of the highest Einstein temperature, made the last two parameters less accurate 
than the others. 

3.3. Debye temperature from the elastic properties 

The Debye temperature is related to the sound velocities by the following equation 
[39]: 

i i 

113 

@ ,!I 9N, 
1 

D k 4nV (l/~,)~ +~(I/c,)~ 
(7) 

where h and k are the Planck and Boltzmann constants, V the volume of the elastic con- 
tinuum and Na the number of particles (atoms or molecules) assumed to form the contin- 
uum. cl and ct are the longitudinal and transverse sound velocities, respectively. They are 
related to the elastic constants by the following equations [39]: 

Cl =Jc44 lP (9) 

where p is the mass density = 2.53 g cmm3 [28]. The elastic constants [30] are 
ci, = 2.200 x lOi N m-2, cl2 = 1.088 X lOi N mm2 and cM = 0.854 X lOi N mm2 at 
298 K. The Debye temperature calculated from these values is 92.4 K. It agrees very well 
with the value from the heat capacity. If the elastic and volume data for 250 K is used, 
we obtain a Debye temperature of 95.4 K. Being a mechanical quantity, it depends on the 
temperature only weakly, but the small increase agrees with the general property of sol- 
ids that they become stiffer at lower temperature. 

The quantity N,jV in Eq. (7) is rather interesting. This is the number density of the vi- 
brating units (atoms or molecules) and, as such, has an obvious meaning for monatomic 
and other simple substances. For the present crystal, it is not obvious whether we should 
count the number density by (1) the individual ions, (2) the chemical unit or (3) the cubic 
unit cell. The first, second and third choices gave 134 K, 92 K and 59 K for the elastic 
Debye temperature. The second choice agrees with the calorimetric Debye temperature. 
This indicates that the vibrating unit consists of a cobalt hexahydrate cation and two 
bromate anions. This agrees with the basis of the calorimetric analysis that employs the 
chemical unit. 

In the analysis of the heat capacity of solids, it has been standard practice to define 
limiting Debye temperatures at high and low temperatures [41]. The former gives a 
measure of the frequency range of the entire lattice spectrum. The latter is related to the 
sound velocity and elastic constants. Therefore, comparison between thermal and elastic 
Debye temperatures has previously been made by taking the low temperature limiting 
value of the thermal Debye temperature. In the present analysis, the Debye temperature 
remains at a constant value at all temperatures from well above the Debye temperature 
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down to the lowest temperature (13 K), as shown in Fig. 4. Thus the comparison between 
thermal and elastic Debye temperatures was made directly, the low temperature extrapo- 
lation being unnecessary. The Debye temperature determined in the present analysis is 
the low-temperature Debye temperature even when it was determined from a data set 
covering the whole temperature range. 

The Cr-CV term was typically 23 J K-‘mol-i at 250 K, or 5.8% of Cr. The best-fit 
value of the correction coefficient A was (2-5) X 10e7 mol J-l depending on the T, value. 
This quantity is related to the thermal expansivity and elastic constants cij by the equation 

1421 

C, -C, = TVxaicOaj = 7’V(3c,, +6+)a* 
ij 

(10) 

Substituting appropriate values for a and cij from Ref. [30] and equating the result with 
AC,*T, we obtained A = (3.48 + 0.05) X 1c7 mol J-’ at 250 K. The agreement with the 
calorimetric value is satisfactory. The probable error of A from the calorimetry is much 
larger than that of the elastically determined value. This is because the CP - C, difference 
is a correction term of small magnitude and thus could not be determined accurately from 
the calorimetric data. 

In the present analysis, all the experimental points were given the same weight in the 
least squares fitting. This may be modified by various weighting schemes, in order to 
take into account the different accuracy and precision of the heat capacity data at differ- 
ent temperatures. Weighting will be necessary when we analyze heat capacities below 
10 K where the magnitude of the heat capacity depends strongly on the temperature. But 
in such a low temperature region, a different fitting scheme utilizing the Zs dependence 
will be applicable. For the temperature region dealt with here, the even weighting worked 
well. 

4. Conclusion 

It has been customary to derive the Debye Zs part from CP data by plotting CdT 
against T2, the slope being proportional to the magnitude of the Debye term. This method 
is particularly suitable for analysis of the heat capacity of a metal for which the T term is 
also of interest. Another way often taken is to calculate the Debye temperature from the 
heat capacity data as a function of temperature [43]. For this purpose one has to normal- 
ize the heat capacities judiciously. If the crystal were an ideal Debye solid, the Debye 
temperature thus determined should be constant against the temperature. This is not the 
case for actual substances and the Debye temperature depends on the temperature. One 
may interpolate the Debye temperature curve into an anomalous region, if there is one, to 
determine the excess heat capacity, a most recent use of the Debye function for this pur- 
pose being found in Ref. [44]. One may also discuss its temperature dependence by in- 
voking contributions from narrow-band optical modes that may be inferred to exist from 
the molecular and crystal structures. The calculation presented in this paper is an attempt 
to systematize and simplify the use of the Debye and Einstein functions and thereby to 
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allow different model functions to be tested against the experimental data. The final re- 
sult obtained is in quantitative agreement with the independent data on the elastic prop- 
erty. Other parameters determined in the fitting (optical branch frequencies and the Cr, - 
C, correction coefficient) are related with spectroscopic and thermal expansivity data. 

They are compared favorably for the present compound. Elastic, spectroscopic and ex- 
pansivity data may not be available for other compounds, but the present result suggests 
that the same method will give a reliable estimate of the vibrational heat capacity of sub- 
stances whose excess heat capacity one would like to extract from the experimental data. 

Appendix 

Standard thermodynamic functions were calculated from the heat capacity data and 
are given in Table A 1. 

Table A 1 

Standard thermodynamic functions of Co(CH20)6(B@)2 crystal (R = 8.31451 J K-’ mol-‘) 

T/K Cp”IR (HO- HOO)IRT (SO-&“)/R - (Go-HOO)/RT 

5 0.0378 0.0096 0.0132 0.048 1 
10 0.2855 0.0734 0.0998 0.0253 
15 0.8678 0.2317 0.3151 0.0826 
20 1.738 0.4955 0.6795 0.1840 
25 2.790 0.8467 1.177 0.3310 
30 3.988 1.269 1.791 0.5216 
35 5.278 1.749 2.502 0.7529 
40 6.600 2.273 3.293 1.020 
45 7.964 2.829 4.149 1.320 
50 9.327 3.411 5.059 1.648 
60 11.99 4.620 6.996 2.376 
70 14.51 5.855 9.036 3.181 
80 16.89 7.086 11.13 4.044 
90 19.14 8.301 13.25 4.949 

100 21.26 9.492 15.38 5.885 
110 23.27 10.65 17.50 6.844 
120 25.18 11.79 19.61 7.821 
130 27.00 12.89 21.69 8.807 
140 28.74 13.96 23.76 9.802 
150 30.42 15.00 25.80 10.80 
160 32.03 16.01 27.81 11.80 
170 33.59 17.00 29.80 12.80 
180 35.11 17.97 31.77 13.80 
190 36.59 18.91 33.71 14.80 
200 38.04 19.83 35.62 15.79 
210 39.47 20.73 37.51 16.78 
220 40.86 21.61 39.38 17.76 
230 42.24 22.48 41.22 18.74 
240 43.60 23.33 43.05 19.72 
250 44.95 24.17 44.86 20.69 
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Table Al (continued) 

T/K Cp”IR (HO- HOo)IRT (So-So”)IR - (Go-Ho”)IRT 

260 46.27 24.99 46.65 21.65 
270 47.58 25.81 48.42 22.61 
273.15 47.99 26.06 48.97 22.91 
280 48.88 26.61 50.17 23.56 
290 50.15 27.40 51.91 24.5 1 
298.15 51.17 28.03 53.31 25.28 
300 51.40 28.18 53.63 25.45 
310 52.63 28.95 55.33 26.39 
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